AME Seminar: Aman Chandra

Thursday, January 19, 2023, 4:00 p.m.
Aman Chandra
Doctoral Candidate
Aerospace and Mechanical Engineering
"Gossamer Space Structures For Radio Communication"
AME Lecture Hall, Room S212

Abstract
Increasing access to space over the last few years, brought about by a growing number of satellite launches to orbit has progressively reduced their launch costs. Advances in commercial off the shelf (COTS) systems for spacecraft have greatly reduced development times and risk. This has led to a renewed focus of the space industry on increasingly capable Low Earth Orbit (LEO) satellite missions and deep space exploration missions. A fundamental enabling technology for such missions is the ability to communicate at high data rates to meet increasing data handling requirements. The present work describes our efforts towards the development of large scale inflatable membrane structures that can provide large antenna surfaces required to support high data rate radio communications. The developed structures are lightweight, highly compactible deployable structures designed for small satellites. Our efforts have led to the design, development and testing of inflatable membrane antennas. The technologies developed in the course have been integrated into a small satellite or CubeSat for spaceflight demonstration on the University of Arizona’s first CubeSat mission named ‘CATSAT.’ CATSAT is a 6U satellite mission built, tested and flight qualified at the University and is set for launch onboard NASA’s Elana 43 flight in March 2023. The mission will demonstrate inflatable antenna technology for the first time, from LEO, by performing high data rate downlinks with our ground station. This first half of this work describes the design, development and flight qualification testing considerations made in the course of the system’s development. The second half describes technology readiness level (TRL) raising activities conducted to integrate the developed system into a functional spacecraft.
Bio
Aman Chandra is a Ph.D. candidate in aerospace and mechanical engineering. He also works full time as an aerospace engineer at FreeFall Aerospace, Inc. His Ph.D. research has been dedicated to the development of inflatable antenna systems for small satellite radio communications and satellite systems engineering. Chandra's research interests include structural and thermal design of high strain composite materials, antenna design, deployable gossamer structures, spaceflight mission analysis and satellite systems engineering. His Ph.D. thesis advisor is Dr. Christopher Walker, professor of astronomy at the Steward Observatory.