MECHANICAL ENGINEERING GRADUATE STUDIES
Making the machines that move our world

Develop technologies that make the world run more smoothly.

$5.5 MILLION in annual research expenditures

Top 30% mechanical engineering graduate programs
(U.S. News & World Report 2022)

"I've worked in Spain, Germany and Mexico, and the tools we have at the University of Arizona are absolutely incredible – the best tools, technology and interaction with professors." - Christian Davila-Peralta, PhD student

Research Focus Areas
- Dynamics and Control
- Fluid Dynamics
- Solid Mechanics
- Thermosciences

Degrees
- PhD Mechanical Engineering
- MS Mechanical Engineering (online option)
- ME Robotics and Automation

Funding options throughout degree lifecycle

Application Deadlines
- Fall: January 1
- Spring: June 1

Contacts
Jesse Little
Associate Head of Graduate Studies
jesselittle@arizona.edu

Eniko T. Enikov
Director of Master of Engineering Program
enikov@arizona.edu

Cho Lik Chan
Director of Online MSME Program
cholik@arizona.edu

Liza Maria Soto
Coordinator, Graduate Studies Program
lizamariasoto@arizona.edu

ame.engineering.arizona.edu
Having these researchers, pillars in their fields, under the same roof gives our department an edge in being able to bridge gaps in knowledge and best prepare our faculty and students to solve problems.

- Alex Craig, assistant professor

Faculty Expertise

Eric A. Butcher – ebuch@arizona.edu
- spacecraft GNC
- astrodynamics
- nonlinear dynamics, vibration and control
- stability, control and estimation in periodic, delayed and fractional systems

Cho Lik Chan – cholik@arizona.edu
- heat transfer
- materials processing
- boundary elements methods

Stuart A. Craig – sacraig@arizona.edu
- aerodynamics
- stability and laminar turbulent transition of supersonic and hypersonic boundary layers
- experimental fluid mechanics
- hydrodynamic stability

Eniko T. Enikov – enikov@arizona.edu
- dynamics of charged particles and macro-ions
- control of processes driven by electrostatic forces

Hermann Fasel – fasehl@arizona.edu
- computational fluid dynamics
- hydrodynamic stability
- laminar turbulent transition
- turbulent flows
- hypersonic flows
- flow control
- nonlinear dynamics
- aerodynamics
- UAVs
- flight experiments
- autonomous flight

Barry D. Ganapol – ganapol@cowboy.ame.arizona.edu
- radiation and particle transport theory
- applied mathematics
- satellite remote sensing

David Hahn – dwahn@arizona.edu
- thermal sciences
- laser-based diagnostics
- renewable energy
- combustion
- biophotonics
- laser-material interactions
- plasma-material interactions

Kyle Hanquist – hanquist@arizona.edu
- hypersonics
- nonequilibrium flows
- molecular gas dynamics
- computational fluid dynamics
- low-temperature plasmas
- rarefied gas and optimization

Qing Hao – qinghao@arizona.edu
- heat transport inside lithium-ion batteries
- high-power electronics
- thermal insulation materials
- thermoelectrics
- measurement & applications of graphene and other two-dimensional materials

Kavan Hazeli – hazeli@arizona.edu
- materials design
- human-centered design
- mechanical behavior of materials
- multi-functional materials
- failure analysis
- fatigue
- thermo-mechanical properties
- biomaterials design and characterization

Jeffrey W. Jacobs – jware@arizona.edu
- experimental fluid dynamics
- hydrodynamic instabilities, including Richtmyer-Meshkov and Rayleigh-Taylor instabilities
- turbulent mixing

Peiwen ‘Perry’ Li – peiwen@arizona.edu
- renewable energy
- heat mass transfer in gas turbines and HVACR systems
- electrolyzers
- energy-water nexus
- fuel cells
- hydrogen storage and generation
- energy and power systems

Jesse Little – jesselittle@arizona.edu
- active flow control
- boundary layer separation
- plasma actuators
- shock boundary layer interaction
- unsteady aerodynamics
- vortex body interaction
- wind tunnel testing and experimentation

Erdogan Madenci – madenci@arizona.edu
- prediction of deformation and failure modes in metallic and composite materials
- characterization of mechanical properties of materials

Farzad Mashayek – mashayek@arizona.edu
- turbulent reacting flow
- plasma flow
- electrostatic atomization
- solid ion batteries
- computational methods
- machine learning applications

Samy Missoum – smissoum@arizona.edu
- design optimization
- probabilistic design
- reliability and risk assessment
- vibrations
- advanced finite element modeling

Bernard Parent – bparent@arizona.edu
- reactive flows
- re-entry flows
- plasma-assisted combustion
- plasma-based fuel reforming
- plasma aerodynamics
- computational fluid dynamics
- scramjets
- lightning

Hossein Rastgoftar – hrastgoftar@arizona.edu
- decision-making under uncertainty
- human-robotic interaction
- swarm robotics
- system autonomy
- UAV traffic management
- intelligent transportation
- formal specification and verification
- finite-state abstraction of dynamical systems

Sergey Shkarayev – ssv@arizona.edu
- aerodynamics
- fluid-structure interactions
- unmanned aerial vehicles

Jekan Thanga – jekan@arizona.edu
- space robotics
- CubeSats and sensor-networks
- machine learning applied to dynamics and control of swarms
- small satellite propulsion
- autonomous systems
- power and thermal systems

Xiaoyi Wu – xwu@arizona.edu
- tissue engineering
- biomechanics
- biomaterials and computational biomaterials

Israel Wygnanski – wygy@arizona.edu
- aerodynamics related to fixed-wing and rotary aircraft
- control of separation
- high lift devices
- drag reduction
- aeroacoustics, particularly jet noise, cavity noise and screech

Vitaliy Yurkiv – vyurkiv@arizona.edu
- multi-physics modeling and machine learning calculation of energy storage and conversion technologies
- ab-initio density functional theory calculations
- phase field modeling
- thermal measurements of rechargeable batteries
- thermal runaway assessment in electric vehicles

Olesya Zhupanska – oiz@arizona.edu
- micromechanics of composites
- structural composites in extreme environments
- low velocity impact of composites
- PDE-constrained optimization with applications to mechanics
- contact mechanics

Yitshak Zohar – zohar@arizona.edu
- biomicrofluidics and microscale manipulation of biotissues, such as proteins, cells and tissues in microfluid systems